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Abstract

The aim of the dissertation work is to prepare and characterize a multi-layer fabric for
buffering thermal shocks from the environment using a phase change material (PCM)
and protection against leakage of PCM in the liquid state (above and in the phase change
region)

Although there have been various PCM contained textiles, there are still some problems
with their practical use. The amount of PCM in fibers or fabric is limited when they
significantly deteriorate other properties (e.g., mechanical property, breathability etc.).

The multi-layer fabric is composed from PCM-loaded layer, barrier layer and protective
layer. By controlling the interfacial adhesion of melting PCMs on barrier layer or
protection layer, the leakage phenomena were totally avoided. The PEG and paraffin
wax were selected as PCMs in such multi-layer fabric. The maximum loading amount
of PCMs in the multi-layer fabric was 45 wt%. Correspondingly, the overall enthalpy
value of the multi-layer fabric was high as 78 J/g, which supported thermal buffering
effects

Besides, the introduction of metal microparticles in the PCM-loaded layer was able to
enhance heat transfer through the whole multi-layer fabric.

Furthermore, the breathability of the multi-layer fabric was also realized by modifying
PCM-loaded layer. The PCM-loaded layer was split to system of air pockets and PCM
pockets. However, the heat transfer through the breathable multi-layer fabric became
complicated. The size of air pockets was strongly connected to the mutual heat transfer
between PCM pockets and air pockets.

The research work not only provided an alternative to have a textile containing PCM,
but also extended the application of nanofibrous membranes in smart textiles. It has
been verified that the nanofibrous PUR membrane incorporated into the multilayer
textiles meets the requirements of preventing PCM leakage during phase changes and
ensures their practical use.

Keywords: PCM, PUR nanofibrous membrane, PCM leakage, interfacial adhesion,
thermal energy storage, thermal buffering effect, metal particles, breathability



Abstrakt

Cilem disertacni prace je pfipravit a charakterizovat vicevrstvou tkaninu pro tlumeni
tepelnych Soki z okoli s vyuzitim materidlu s fazovou zménou (PCM) a ochranu pied
unikem PCM v kapalném stavu (nad a v oblasti zmény faze). Ackoli jsou znamy
textilie obsahujici PCM v ruzné form¢ (obvykle zapouzdienych v mikro kapsulich),
existuji stale problémy s jejich praktickym pouzitim. Mnozstvi PCM ve vldknech nebo
tkaninach je omezené, protoze se vyznamné zhorsuji jiné vlastnosti (napf. mechanické
vlastnosti, prodysnost atd.). Navrzena vicevrstva textilic se sklada z vrstvy plnéné
PCM, bariérové vrstvy a ochranné vrstvy. Rizenim mezifizové adheze roztavenych
PCM na bariérové vrstvé nebo ochranné vrstvé bylo zcela zabranéno jevu tniku. PEG
a parafinovy vosk byly vybrany jako vhodné PCM v pfipravené vicevrstvé textilii.
Maximalni mnozstvi PCM v pfipravené vicevrstvé tkanin€ bylo 45 % hmotnostnich
procent, coz vyrazné prevySuje mnozstvi kapsuli PCM na textiliich. Celkovéa hodnota
entalpie vicevrstvé tkaniny byla také vysoka, tj. 78 J/g, coz podporovalo tepelné tlumici
efekty.

Kromé toho zavedeni kovovych mikrocastic do vrstvy plnéné PCM o zvysilo pfenos

tepla celou vicevrstvou textilii.

ZlepSeni prodysnosti pfipravené vicevrstvé tkaniny byl také realizovano Gpravou vrstvy
plnéné PCM. Vrstva plnénd PCM byla rozdélena na vzduchové kapsy a kapsy
Optimalni velikost vzduchovych kapes byla siln€ ovlivnéna vzajemnym pfenosem tepla

mezi PCM obsahujici kapsami a vzduchovymi kapsami.

Vyzkumna prace poskytla nejen novou alternativu k ptipravé textilii obsahujici PCM,
ale také rozSifila aplikaci specialnich nanovldkennych membran v inteligentnich
textiliich. Bylo ovéfeno, Ze nanovldkennd PUR membrana zalenéna do vicevrstvé

rrrrr

jejich praktické pouziti.

Kli¢ova slova: PCM, PUR nanovlakenna membrana, unik PCM, mezifazova adheze,

akumulace tepelné energie, tepelny tlumici efekt, kovoveé castice, prodysnost
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1. Introduction

Phase change materials (PCM) are a group of materials that adsorb/release thermal energy
during their phase transition. The PCM could be applied in various fields, including building
materials, solar energy storage, the thermal management of the electronic system, food storage,
smart textiles, and so on [1-6]. The discussions of the PCM related to the PCMs classification,
the preparation of PCMs, the application of PCM have been reviewed in various published
works [2,7-14]. Besides, the toxicity, health hazards, and commercialization of PCMs are
reviewed by S.S. Chandel et al [15]. It is also reported that the market revenue of the PCMs is
increasing with rate of 19 % and can reaches 5.1 billion dollars, which is shown in Figure 1
(A).

Especially, the PCM-incorporated textiles have attracted more and more attention even from
academics (Figure 1 (B)) (PCMs publications are determined by search ‘phase change material’
for ‘abstract’ or ‘title’ or ‘keyword’, and PCM-incorporated textile publications are determined
by search ‘phase change material’ and ‘textile’ or ‘fabric’ or ‘yarn’ or ‘fiber’ for ‘abstract’ or
‘title” or ‘keyword’). It is well known that the first introduction of PCM into textiles was
realized from NASA in the early 1980s, which was aimed to improve the thermal protection
against the extreme temperature fluctuation in the outer space. The basic working principal of
PCM-incorporated textiles is the realization of thermal energy storage when the phase transition
of PCM between the solid and liquid phase while the temperature of PCM during the phase
transition is little altered. Besides, the thermal resistance of the PCM-incorporated textiles is
enhanced when there is the phase transition of PCM. Now, there are various commercial PCM-
incorporated textile products over the globe (e.g., air condition thermal fiber from Outlast
company, Smartskin fabric, Triangle R&D and so on), which is shown in Figure 1 (C). The
main function of the PCM-incorporated textiles includes thermal regulation, heat protection,
thermal energy harvesting and so on (Figure 1 (D)). The main reasons for the rapid
development of the PCM textiles could be two aspects:

1) The first aspect is based on the various functional applications of textiles. It is indicated that
the concept of ‘textile structures’ include fiber, yarn, and fabric [16]. Since the successful
fabrication of the ultrafine fibers via the advanced technologies, the flexibility of the
ultrafine fibers supports the high compatibility with various other materials. Besides, the
yarns are considered a special structure where the twist enhances the mechanical property.
The release/store of the mechanical property in the yarns could be realized. In addition, the
fabric is a stable porous structure. By modifying the fabric, various applications are
proposed, including the antibacterial property, oil/water separation, particle filtration,
thermal regulation, Joule heating property, optical property, EMI shielding etc. [17-26].

2) The second aspect is based on the usage of the PCM. The usage of the PCM is proposed to
enhance the thermal regulation and thermal energy storage, and also supports the light
radiation-thermal energy conversion, solar-thermal energy conversion, and so on [27].



Although there has been a great achievement in PCM-incorporated textiles, there are still some
challenges. The limited thermal energy storage of PCM-incorporated textiles is found, which is
caused by limited mass of PCMs in the textiles and confined crystallization of PCMs in the
textiles. So, how to effectively increase thermal energy storage and thermal buffering effect of
PCM-incorporated textiles should be focused on. Besides, the thermal energy storage efficiency
of PCM-incorporated textiles is low. Enhancing the thermal energy storage efficiency of PCM
textiles can support other applications, which is also necessary to be solved.

This dissertation work is in the form of commented set of published scientific papers dealing
with preparation, characterization and testing of multi-layer fabric for buffering thermal shocks
from the environment by using of PCM. In total, the set of scientific paper contains 20 research
works published in impact factor journals and 17 conference paper. There were 5 published
chapters in scientific books.
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C: famous commercial products, and D: function of PCM-incorporated textiles for human



2. State of the Art

2.1 Suitable PCM for textiles

It is well known that the PCM is classified into two types: inorganic PCM and organic PCM
[28]. However, the phase separation and corrosion property of inorganic PCM are found, which
make inorganic PCMs unsuitable for textiles. So, the organic PCM are used for textiles, which
includes paraffin wax, fatty acid, polyethylene glycol and so on. However, the leakage and low
thermal conductivity of the organic PCM are the main problems for the practical applications.
To avoid leakage, microencapsulated PCMs (MPCM) and form-stable PCMs (FSPCM) have
been proposed [29-31].

® PCM capsules (MPCM)

MPCM has been the most industrial technology and its application in textiles has been studied
for decades [32,33]. The summary for the MPCM is shown in Figure 2 (A). The MPCM
consists of supporting materials as shell and PCM as core, where stability of thermal energy
storage and phase transition of MPCM is enhanced [34]. The biggest advantage of MPCM is
the good encapsulation of PCMs. Besides, there are various preparation methods for
development of MPCM, such as suspension-like polymerization, photo-induced
microencapsulation, interfacial polymerization etc. According to the shell type of MPCM, there
are three MPCM, including organic MPCM, ceramic MPCM and metallic MPCM. Among
three MPCM, the organic MPCM are usually for textiles since they have no corrosion and easy
control. However, the poor mechanical property of the organic MPCM is found, which results
in unexpected destroy of MPCM during their coating on fabrics. Besides, the overall thermal
conductivity of the MPCM reduces the heat transfer efficiency. In addition, the encapsulation
efficiency of MPCM requires modification and the reproducibility of the MPCM is difficult
[33].

® Form-stable PCM (FSPCM)

FSPCM is an alternative to avoid leakage of PCM and realize thermal energy storage, which is
shown in Figure 2 (B). FSPCM is usually prepared by filling PCM into porous materials (e.g.,
zeolite, aerogel, foam etc.) [29,35-38]. Although the leakage of molten PCMs can be avoided,
the self-crystalline behavior of the encapsulated PCM in the FSPCM is significantly confined
and thermal energy storage and phase transition behavior of the FSPCM is different from pure
PCM [39,40]. Besides, the environment could have a side effect on the phase transition behavior
and thermal energy storage of FSPCM. For example, our recent work revealed that a significant
side effect of hot and humid environment resulted in a reduced overall thermal energy storage
of PCM/expanded graphite composites [41].
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Figure 2 Current problems of PCM (A: MPCM, and B: FSPCM)

2.2 Incorporation of PCMs into textiles

2.2.1 PCM containing fibers

For PCM containing fibers, the PCM are trapped in the fiber matrix. Various technologies are
used to prepare the PCM containing fibers, including electrospinning, centrifugal spinning,
molten spinning, solution spinning, dry-jet quenching spinning, interfacial polyelectrolyte
complex spinning, vacuum impregnation, and injection spinning [44]. Then, the various
polymers have been successfully used as the supporting materials for the storage of the different
PCMs, including polyester (PET), polyvinyl alcohol (PVA), polyurethane (PUR), and etc.
Although there is a great achievement in PCM incorporated fibers, some drawbacks or problems
remain to be solved.

As shown in Figure 3 (A), two key factors are taken into consideration for the PCM containing
fibers. Firstly, the PCM loading amount of the PCM containing fibers is limited, which is related
to the mechanical property. Higher PCM loading amount reduces the mechanical property of



PCM containing fibers although increase the thermal energy storage. Especial for MPCM
containing fibers, the recommended maximum MPCM loading amount is 10 wt% [28].
Secondly, there is a strong confinement of PCM inside the PCM containing fibers, which results
in reduced thermal energy storage. Besides, it is reported that the PCM containing fibers have
a stable phase transition behavior after heating/cooling cycles. However, the mechanical
property of the PCM containing fibers after heating/cooling cycles should be different from the
one without heating/cooling cycles since the crystalline structure of the PCM inside the PCM
containing fibers is altered, although there are no research works to report.

The PCM containing fibers are also for fabrication of PCM containing yarns or PCM containing
fabrics. In this case, the similar problems are found as described.

Apart from such PCM containing fibers, the coating of PCM on the fibers is an alternative.
However, it is not standard as PCM containing fibers and there are few works related to such
topic.

2.2.2 PCM containing fabrics

For PCM containing fabrics, the pad-dry-cure coating method is the most popular to have a
coating of MPCM (or FSPCM) on the fabric [5,42,43]. To enhance the ability of MPCM (or
FSPCM) on the fabric, the binder is necessary to be used. Then, such MPCM (or FSPCM)-
coated fabrics have thermal regulation behavior. Although there are some achievements in the
MPCM-coated fabrics, some problems remain to be solved, which is shown in Figure 3 (B).

Firstly, the MPCM loading amount on the fabric is limited and shorter thermal buffering effect
is suggested. Secondly, the surface chemistry and mechanical property of PCM containing
fabrics are changed since there is a coating by using binders. The type of binders significantly
affects thermal comfort (e.g., moisture management etc.). Thirdly, the breathability (e.g., air
permeability, water vapor permeability) is reduced since there is a MPCM (or FSPCM) coating
layer on the fabric surface. Fourthly, loss or damage of MPCM possibly happens because of
external mechanical damage (e.g., due to washing, abrasion). The leakage of the MPCM also
possibly happens during the coating process.
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2.2.3 Characterization of PCM-incorporated textiles

There are various methods to characterize thermal buffering effect of PCM-incorporated
textiles. Among all the methods, the temperature-time curve (T-history) is the most convenient
one to characterize thermal buffering effect. The whole T-history or selected points only can be
used for characterization of thermal buffering effect of PCM [42,45]. Besides, the protection
time of the PCM-incorporated textiles has been proposed. This time is determined by the time
corresponding to half of difference of final and initial temperature [46]. However, such
characterization of T-history cannot provide the exact thermal buffering effect range of the
PCM-incorporated textiles.

Kinetics of temperature changes are formally expressed as rate equation of first order is
equivalent to so-called Newton’s cooling law (used of course for both cooling and heating),
which is expressed by equation (1).

Z—Z =—(T-T)/t 1)

Where, Ts is the final temperature of sample (for t—o0), Ti is the initial temperature of sample,
T is the sample temperature in time t and 7 is the cooling (heating) rate constant.

By integrating of this differential equation in suitable limits (from t=0 where T= T; till time t
where temperature is T), the integral form is expressed in equation (2).

T, —T = (T —T)e /" 2)

Formal linearization of equation (2) is expressed by equation (3):



In[(Tf — T)] = In[(T; — T;)] — ¢t/ )

The 7 can be therefore approximately related to slope of dependence y =In (T -Tf) on X =t by
linear least squares method.

Figure 4 (A) and (A’) present one example for standard application of Newton’s cooling law.
For the common fabric, the temperature-time curve (T-history) is classic, and the parameters of
Newton’s cooling law are interpretated with physical meaning, and the relevant thermal
property of fabric (e.g., thermal conductivity, thermal resistance etc.) can be estimated [27]. To
extend the application of this model for better fitting of complex T-history curves with different
parts, the different models are proposed for individual parts [28]. As a result, the calculated
heating or cooling constants corresponds to different parts of T-history. For PCM-incorporated
textiles, the T-history curve consists of three parts, including first sensitive heat storage part
with solid PCM, latent heat storage part with solid-liquid PCM and second sensitive heat
storage part with liquid PCM. By formal splitting of kinetic equation (2) into the three parts of
T-history of PCM-incorporated textiles can be estimated. More precise is to integrate rate
equation (1) for different parts of T history in different limits.

For Part I, obviously the lower limitist =0 and T = Ti. This part is bounded by end point (t:.
T1) which is constraint. Then, the modified equation (4) is obtained.

T-Tr _ -/t
Ti-Tr =€ (4)

For Part 11, the lower limit starts from the point of t = t; and T = T;and ends at the point of t =
t>and T = T,. Then, the modified equation (5) is obtained.

il R G (5)
T-Tf

For Part 11, the lower limit is at point of t = t; and T = T2 and higher limit could be at point of
t=tsand T = Tr. Then, the modified equation (6) is obtained.

= e ©)
It should be noticed that the use of equation (1) assumes here that for all parts have an
equilibrium temperature (e.g., Tr). To having the turning points for three parts, the plot of
ln[(T - Tf)] against t can be used. By observing the three linear segments in this plot, the three
parts corresponding to solid phase state of textile and PCM, phase transition state of PCM and
liquid phase state of PCM are suggested. A pure empirical model based on exponential model
expressed in equation (7) is proposed. The A is the factor, and the parameter with subscript 1,
2, 3in equation (7) represents three parts of PCMs (solid phase state, phase transition state and
liquid phase state).
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However, it is hard to obtain the turning points for three parts from T-history curve. By having
logarithm for equation (7), the three linear parts can be obtained. By observing the linear
segments in the plot of ln[(Tf - T)] aganist t, the three parts corresponding to solid phase state,
phase transition state and liquid phase state are suggested. After having linear fitting for each
part of ln[(Tf — T)] aganist t, the parameters including A and 7 can be found. By having
intersection points of adjacent linear equations, the turning points at time t are found. Then, the
nonlinear fitting models according to equation (7) for full heating T history is used. By taking
errors into consideration, the theoretical turning points (time and temperature) for phase
transition are estimated by having the intersection points of adjacent nonlinear model in
equation (7). Figure 4 (B) and (B’) present one example for standard application of modified

Newton’s cooling law.

Besides, the thermal insulation (I) can provide the potential overheat injury of PCM-
incorporated textiles when the PCM-incorporated textiles reach heat balance during heating
process, which is expressed in equation (8). The Th is the temperature of the heater and Ty is
the environmental temperature.

I'=(Ty,—T¢)/(Tp—T,) (8)
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Figure 4 Example for application of Newton’s cooling law (A: heating curve with standard
Newton’s cooling law, A’: standard plot of ln[(Tf — T)] against ¢, B: heating curve with

modified Newton’s cooling law, and B’: nonlinear regression model for ln[(Tf — T)] against ¢)

3. Motivation and aims

It is well known that the leakage of PCM during heating/cooling cycles is governed by viscosity
of molten PCMs and interfacial adhesion between molten PCMs and fabrics if the pure PCMs
are coated on fabrics directly. From this point of view, the multi-layer fabric structure with
barrier layers covering the PCM-loaded layer (pure PCM-coated fabrics) is promising to avoid
leakage [47]. For the selection of the barrier layers, the nanofibrous membranes are
advantageous. There are two reasons:

1) By controlling porosity and surface chemistry, various nanofibrous membranes have been
applied for oil/water separation, air filtration etc. [48-52].

2) The high resistance against mass transfer of nanofibrous membrane-coated fabrics have
been proposed [53,54].

From this point of view, the nanofibrous membranes can be used as barrier layer to resist against

the penetration of molten PCMs.



In this work, we first tried to use nanofibrous membranes in the fibrous multi-layer PCM
system. As shown in Figure 5, the fibrous multi-layer PCM system consists of PCM-loaded
layer, barrier layer and protection layer. The PCM-loaded layer is PCM-coated fabric. The
viscose nonwoven fabric was selected as substrate for coating of various organic PCM (e.g.,
PEG, PW, myristic acid etc.) since the viscose nonwoven fabric is porous and has a good
interfacial adhesion with organic PCM. The PCM-coated fabrics have a mass percentage of
PCMs ranging from 80 wt% to 90 wt%. The nanofibrous membrane is used for barrier layer as
described. Because of weak mechanical property of barrier layer (nanofibrous membrane), the
protection layer was used to avoid damage of barrier layer under external environment. The
commercial PET knitted fabric was selected for protection layer. Still, it is necessary to avoid
the effect of liquid on the PCM inside the fibrous multi-layer PCM system. Although net PET
film has a low surface energy and hydrophobic property, the fibrous structure of PET fabric
would result in wicking of solution. Then, the alternatively commercial PET fabric with
hydrophobic coating (5 uL water contact angle of 122°) is also selected as protection layer. The
details about used fibrous materials are given in Table 1, and their structure and morphology
are shown in Figure 6.

The main objectives of this work include four aims by following strategy as shown in Figure
5:

» The first objective is to find suitable multi-layer fabric structures to contain PCM. The
multi-layer fabric structure is composed of PCM-loaded layer, barrier layer and protection
layer and stabilized by using commercial fibrous tape to connect each layer. Firstly, three
different organic PCMs with similar melting/solidifying points are used, including PEG
6000, paraffin wax (PW) and myristic acid (MA) (Table 2). Besides, the different fibrous
multi-layer PCM systems with different structures are prepared, which is given in Table 4.
After investigating leakage phenomena of PCM from the fibrous multi-layer PCM system,
the selected fibrous materials in the multi-layer fabric containing PCM will be proven. The
wetting behavior of molten PCM on various fibrous materials will be also estimated, which
are considered for leakage phenomena.

» The second objective is complex characterization of thermal property of the prepared
fibrous multi-layer PCM system. The thermal energy storage and phase transition behavior
of the suitable fibrous multi-layer PCM system will be investigated by using differential
scanning calorimetry (DSC). In addition, the thermal buffering effect will be evaluated by
recording heating/cooling T-history curves. Especially, the application of Newton’s
cooling law is to characterize heating T-history of the fibrous multi-layer PCM system.

» The third objective is to improve the thermal energy storage efficiency of the suitable
fibrous multi-layer PCM system. Different metal particles (MP) including copper (Cu),
aluminum (Al), silver (Ag), iron (Fe), and zinc (Zn) will be introduced in PCM-loaded
layer to increase thermal conductivity supporting energy storage efficiency (Details of MP
are given in Table 3). Correspondingly, thermal energy storage, phase transition behavior
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and thermal buffering effect of the MP-incorporated fibrous multi-layer PCM system will
be investigated.

» The fourth objective is to improve the breathability of the fibrous multi-layer PCM system.
The PCM-loaded layer of the fibrous multi-layer PCM system will be modified and consists
of PCM pocket and air pocket. The breathability, thermal energy storage, phase transition
behavior and thermal buffering effect of the multi-layer PCM fabrics will be investigated.

This dissertation thesis represents a set of published scientific papers accompanied by a detailed

discussion of current state of knowledge about preparation and characterization of fibrous

multi-layer phase change material (PCM) system with enhanced thermal conductivity and
protection against leakage of PCM in the liquid state. Full results can be found in published

work ([1], [2], [3], [4] and [6] in Sec. 9.1).

Basic structure of fibrous multi-layer PCM system

Barrier layer <

(nanofibrous membrane)

Protection layer
(Commercial fabric with or
without hydrophobic coating)

PCM-loaded layer
(PCM-coated viscose fabric)

Strategy

Leakage phenomena

1 2. Applications based on working | <:> * Thermal behavior
1 I
i temperature ! * Control of working temperature

e e e e e e e e e e e, e, e, - ———— - 1

' 3. Functionalization with other | <:> * Enhanced heat transfer
1
| properties . * Enhanced breathability

Figure 5 Basic structure of a fibrous multi-layer PCM system and development strategy

Table 1 Details for fibrous materials (mean+tstandard error)

Fibrous Areal density Thickness Diameter  of Water Surface

materials fiber contact porosity
angle” (%)

Viscose 474+1.21g/m? 0.33+0.02mm  13.84+4.79um  Q° 15.5+1.3

nonwoven

fabric
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PET knitted 200+2.35g/m?
fabric

PET knitted 212+2.51g/m?
fabric  with

hydrophobic

coating

PU 6.0+1.02g/m?
nanofibrous

membrane

0.57£0.01mm  12.54+1.49m 0° 4.1+1.2

0.54+£0.01mm  13.57+£1.05um 122+2.1 6.3+1.1

0

0.1£0.01mm 2924132nm 131+2.1° 3.5+1.2

“: water contact angle values were measured after 5 min deposition

Figure 6 Structure and morphology of used fibrous materials (A, B, C, D: macroscopical images

of viscose nonwoven fabric, PU nanofibrous membrane, PET fabric and PET fabric with

hydrophobic coating; a, b, ¢, and d: SEM images of viscose nonwoven fabric, PU nanofibrous
membrane, PET fabric and PET fabric with hydrophobic coating)

Table 2 Details of used organic PCMs from Sigma Aldrich datasheet

Label Materials

Melting point (°C)

PEG 600  Polyethylene glycol with molecular weight of 600 g/mol 17-22
PEG 1000 Polyethylene glycol with molecular weight of 1000 g/mol  33-40
PEG 1500 Polyethylene glycol with molecular weight of 1500 g/mol  43-49
PEG 4000 Polyethylene glycol with molecular weight of 4000 g/mol  53-58
PEG 6000 Polyethylene glycol with molecular weight of 6000 g/mol 58-63
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PW Paraffin wax 58-62
MA Myristic acid 52-54
Table 3 Details of metal particles (MP) from company
MP type Diameter (D50) (um)
Cu 35.00
Al 51.47
Ag 23.00
Fe 25.00
Zn 3.60
Table 4 Description of multi-layer PCM fabrics
Sample code  Protection layer Barrier layer PCM-loaded
layer
Clma PET fabric - MA-coated
C2ma PET fabric PU nanofibrous membrane viscose fabric
C3ma PEG fabric with -
hydrophobic coating
Cdma PEG fabric with  PU nanofibrous membrane
hydrophobic coating
Clpw PET fabric - PW-coated
C2pw PET fabric PU nanofibrous membrane viscose fabric
C3pw PEG fabric with -
hydrophobic coating
Cdpw PEG fabric with  PU nanofibrous membrane
hydrophobic coating
Clerec PET fabric - PEG-coated
C2rcG PET fabric PU nanofibrous membrane viscose fabric
C3rec PEG fabric with -
hydrophobic coating
Cdpec PEG fabric with  PU nanofibrous membrane
hydrophobic coating

4. Construction of A Fibrous Multi-layer PCM System
Various fibrous multi-layer PCM systems have been developed according to Table 4. At first,
the leakage of PCM textiles should be solved. After checking leakage phenomena of different
combinations of fibrous multi-layer PCM system, two structure of the fibrous multi-layer PCM
systems without leakage were successfully obtained. The first one (C4pw)) was the sample
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consisting of polyester fabric with hydrophobic coating as protection layer, PU nanofibrous
membrane as barrier layer and PEG-coated viscose fabric as PCM-loaded layer. The second
one (C4pec)) was the sample consisting of polyester fabric with hydrophobic coating as
protection layer, PU nanofibrous membrane as barrier layer and PEG-coated viscose fabric as
PCM-loaded layer.

Interfacial adhesion

R R g ——

e e e e e e e e e

Weak interfacial adhesion between molten PCM
and barrier layer supported no leakage

Incorporation with
commercial fabric

PCM-loaded layer
(PEG-coated viscose fabric, PEGV)
(PW-coated viscose fabric, PWV)  PU nanofibrous membrane-covering
PW-coated viscose fabric
(UPWV)

Protection layer Barrier layer
(hydrophobic PET fabric) (PU nanofibrous membrane

o)
@
L) PU nanofibrous membrane-covering

% PEG-coated viscose fabric
Macroscopical image of fibrous multi- % (UPEGV)
layer PCM system Diagram for fibrous multi-layer PCVi

system

Barrier layer

Analogical to PCM capsules (MPCMs)

PU nanofibrous membrane-covering
PCM-loaded layer

Figure 7 PCM loading situation inside the fibrous multi-layer PCM system and analogy of
fibrous multi-layer PCM system to MPCMs

4.1 Mechanism to avoid leakage

Itis noticed that the leakage phenomena could be a result of interfacial adhesion between molten
PCMs and fibrous materials. The contact angle of molten PCM droplets on the fibrous
membrane were investigated. As a result, molten PW droplets can be only on the PU
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nanofibrous membrane and have a stable contact angle of 110°. Molten PEG droplets can be
only on the PU nanofibrous membrane and have a stable contact angle of 130°. The weak
interfacial adhesion between molten PW and PU nanofibrous membrane was found, and the
weak interfacial adhesion between molten PEG and PET fabric with hydrophobic coating was
found (Figure 7Figure 7). Especially for C4peg), the successful barrier for resistance of molten
PEG was realized by both PET knitted fabric with hydrophobic coating as protection layer and
PU nanofibrous membrane as barrier layers. So, a combination of weak interfacial adhesion of
molten PCMs and fibrous materials and the use of nanofibrous membrane in fibrous multi-layer
system accounted for no leakage phenomena.

Besides, the PCM (including PEG and PW) were well kept inside the sample C4 fibrous multi-
layer PCM system containing PET fabric with hydrophobic coating as protection layer. So, the
fibrous multi-layer PCM system can resist the side effects from external environment (e.g.,
rubbing, water pouring etc.).

For MPCM-coated fabrics, we have reported that the MPCMs are possibly destroyed during
padding-coating-drying method. For example, the phase transition and enthalpy values are
changed when compared with net MPCMs. It is proposed that the leakage of MPCMs happens
because of unexpected mechanical property of their shells. However, the fibrous multi-layer
PCM system should be a relatively better control of phase transition and enthalpy values under
different external environments because of PET fabric with hydrophobic coating as protection
layer.

4.2 High PCM loading performance in the fibrous multi-layer PCM system

The PCM loading performance is essential for thermal behavior of the PCM-incorporated
materials, including encapsulation efficiency, PCM loading amount, relative crystalline degree
and working temperature range.

The PCM loading amount (p) is directly related to the thermal energy storage, and higher PCM
loading amount supports the higher thermal energy storage. Besides, the self-crystalline
behavior of the PCM inside the PCM-incorporated materials is altered because of the confined
space for crystallization (e.g., MPCMs, PCM containing fibers, form-stable PCM etc.). The
higher predicted relative crystalline degree (),) of the PCM in the PCM-incorporated materials
also supports the higher thermal energy storage. The DSC method is usually for the relative
crystalline degree by using equation (9), where AH, sampie 1S the measured melting enthalpy
value of sample (J/g), p is the PCM loading amount and AH., pc, is the theoretical melting
enthalpy value of PCM. The calculation of the relative crystalline degree is based on the PCM
loading amount. It is noticed that paraffin wax has a solid-solid phase transition and solid-liquid
phase transition. So, the equation (10) modified from equation (9) could be used to reveal
characterize the experimental relative crystalline degree (x), where AH,,, pcy is the measured
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melting enthalpy value of the PCM. The experimental relative crystalline degree obtained from
equation (10) only reveals the effect of PCM-incorporated textile on the self-crystalline
behavior of PCM. Indeed, it is difficult to determine the practical PCM loading amount in PCM-
containing fibers, MPCMs and other PCM-incorporated composites. Instead of the PCM
loading amount, the encapsulation efficiency (n) is proposed as a result of PCM loading amount
and relative crystalline degree of encapsulated PCMs, which is the ratio of the measured
enthalpy value (AHgmpe) O the PCM-incorporated materials to the measured enthalpy value

(AHpcy) of net PCMs (equation (11)). Besides, the overall enthalpy value (AH, operqn) Of the

fibrous multi-layer PCM system is calculated according to equation (12). The pyyerqn 1S the
PCM loading amount of the whole fibrous multi-layer PCM system.

AHm,sample
Xo = 72T )
AH, pepXP
X — AHm,sample (10)
AHm pcmXDp
AH 1
N =22 X 100% (11)
PCM
AHm,sample
AHm,overall = v X Poverall (12)

Especially, there were several characterizations of the fibrous multi-layer PCM system. The
first one was that the fibrous multi-layer PCM system had a similar structure as MPCMs and
was analogical to the MPCMs as shown in Chyba! Nenalezen zdroj odkazi.. From this point,
the fibrous multi-layer PCM system was in fact the ‘big’ PCM encapsulations. The second one
was that the fibrous multi-layer PCM system was already a composite fabric and can be
incorporated into commercial textiles. So, the overall PCM performance of the fibrous multi-
layer PCM system was presented and compared with current reported PCM products (including
MPCMs, PCM containing fibers, and PCM containing fabrics) for the advantages.

4.2.1 Encapsulation efficiency of the fibrous multi-layer PCM system and current PCM
products

The encapsulation efficiency and molten enthalpy values of the fibrous multi-layer PCM system
(C4pw) and Cépec 6000)) Was 55 % and 73 J/g, and 44 % and 78 J/g, respectively. As shown in
Figure 8 (A), the fibrous multi-layer PCM system had a relative low encapsulation efficiency
and molten enthalpy values when compared with MPCMs [55-70]. According to equation (11),
the encapsulation efficiency is strongly influenced by AHp, sampie @aNd AHyy sampre 1S
significantly affected by PCM loading amount. So, the encapsulation efficiency can be
increased by having relatively higher PCM loading amount in the fibrous multi-layer PCM
system containing protection layers with small areal density. The ideal maximum encapsulation
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efficiency of the fibrous multi-layer PCM system was infinitely close to the fibrous multi-layer
PCM system without protection layer (e.g., UPWV) with encapsulation efficiency of 78.9 %,
which is comparable with reported MPCMs. The ideal maximum molten enthalpy value of the
fibrous multi-layer PCM system (C4w)) can reach 105 J/g and have a medium center in the
Figure 8 (A).

The fibrous multi-layer PCM system also has a comparable encapsulation efficiency with PCM
containing fibers. As shown in Figure 8 (B), the encapsulation efficiency of the fibrous multi-
layer PCM system (C4rec,6000) and C4pwy) is higher than most reported PCM-reported fibers
[71-82]. The encapsulation efficiency can be increased by using thin fibrous materials (e.g.,
ultrafine nonwoven fabric) as protection layers. The ideal maximum encapsulation efficiency
of the fibrous multi-layer PCM system (C4pw)) is close to UPWYV and the highest among the
samples in Figure 8 (B).
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Figure 8 Comparison of this work with MPCM (A) and PCM containing fibers (B) in PCM
encapsulation efficiency

4.2.2 PCM loading amount of the fibrous multi-layer PCM system and current PCM products
As described in published work ([3] in Sec. 9.1), the optimal maximum loading amount of PW
and PEG in the PCM-loaded layer is around 90 wt%. By taking the mass of nanofibrous
membranes and PET fabrics with hydrophobic coating, the optimal maximum loading amount
of PW and PEG in the fibrous multi-layer PCM system reached 46 wt%.

As shown in Figure 9 (A), the PCM loading amount in the fibrous multi-layer PCM system is
very close to most of PCM containing fibers [72,78,81-84]. Besides, the PCM loading amount
in the fibrous multi-layer PCM system is much higher than PCM containing fabrics as shown
in Figure 9 (B). So, the high PCM loading amount in the fibrous multi-layer PCM system was
found.
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Figure 9 Comparison of this work with PCM containing fibers in PCM loading amount (A)
and with PCM containing fabric for potential applications (B)

4.2.3 Experimental relative crystalline degree of PCM in the fibrous multi-layer PCM system
and current PCM products

The experimental relative crystalline degree ratios of PCM in the fibrous multi-layer PCM
system and current PCM products are shown in Figure 10 [73,78,80,82,85-88]. Obviously, the
PCMs in the fibrous multi-layer PCM system have highest relative crystalline degree ratio
(>95%). The little confinement of the fibrous multi-layer PCM system on the self-crystalline
behavior was found.

The reason is that the PCM-loaded layer is the PCM-coated viscose nonwoven fabric and PU
nanofibrous membrane just slightly affected the self-crystalline behavior of PCM. In contrast,
the supporting materials for other PCM products resulted in a strong confinement. For PCM
containing fibers, the self-crystalline behavior of the PCM in the fiber matrix was affected by
the fiber diameter and interfacial adhesion between PCMs and fiber materials. The similar
reason was also for MPCMs and other form-stable PCMs (e.g., PCM/aerogel composites).
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Figure 10 Comparison of this work with other reported work in crystallinity of PCM

4.2.4 Controlled working temperature range and selected applications

It had been proved that the PEG and PW were suitable in the proposed fibrous multi-layer PCM
system. The thermal behavior (including phase transition and enthalpy value) of PEG was up
to the molecular weight and the thermal behavior of PW was up to the carbon numbers. In this
case, various PEGs with different molecular weights were used as PCMs in the fibrous multi-
layer PCM system.

As shown in Figure 11, the working temperature ranges of the fibrous multi-layer PCM system
was successfully controlled by using different PEGs while the enthalpy values were very close
although there was a slight increase when the PEG with higher molecular weight was used.

The enthalpy values of the fibrous multi-layer PCM system were higher than the PCM products
from famous Outlast company while the working temperature range of the fibrous multi-layer
PCM system were easier to be controlled.
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Besides, enthalpy values of the fibrous multi-layer PCM system were smaller than the PCM-
incorporated materials from literature. However, the overall thermal energy storage of the
fibrous multi-layer PCM system can be increased by having relatively higher PCM loading
amount in the fibrous multi-layer PCM system containing protection layers with small areal
density.
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Figure 11 Comparison of this work with current PCM-incorporated products in the field of
working temperature range and enthalpy values

4.2.5 Thermal buffering effect of the fibrous multi-layer PCM system

To reveal thermal buffering effect of the fibrous multi-layer PCM system, PEG 6000 and PW
were selected as PCM, respectively. The higher melting point of PEG 6000 and PW than room
temperature could provide an understanding of thermal buffering effect.

Figure 12 (A) presents full T-history of multi-layer fabric without PCM (reference sample),
multi-layer fabric with PEG 6000 (C4pece000) and multi-layer fabric with PW (Cdpw).
Obviously, the thermal buffering effect was found in the C4peg,6000) and C4pw samples when
compared with C4yeference Sample without PCMs. Generally, the time for each sample to reach
selected temperature during T-history was available to characterize thermal buffering effect.

20



By taking phase transition of PCM into consideration, both the time to reach 65 °C during
heating process (thes), and the time to reach 40 °C during cooling process were selected (tc 40).
The tc40 value of reference sample, C4pea 6000), and Cdpw Was 4s, 207s and 108s, respectively.
From this point of view, the sample C4ec000) had the better thermal buffering effect than
Clpw).

To further reveal the temperature increasing rate in each part in the heating T-history curves of
all the samples, the modified Newton’s cooling law was used to characterize by referring
equation (4)-(7).

Especially, the application of modified Newton’s cooling of to characterize the heating T-
history was valid only when Biot number (Bi) of the sample should be smaller than 0.1. Since
T-history for the samples was measured under room temperature, the free convection was taken
into consideration. Then, the free convection coefficient (h) was chosen as 8 W m? K.,
According to equation (13), Bi number was calculated. The L (mm) was the thickness of the
sample, and the k (W m™* K1) was the thermal conductivity of the sample. Both L and k were
measured by using ALAMBETA setup a [41]. As a result, the calculated Bi number value of
CAreference), C4(peG,6000), and C4pw) ranged from 0.1 to 0.2. So, the modified Newton’s cooling
las could roughly evaluate the heating T-history [42].

= R
Bi = — (13)

As shown in Figure 12 (B), good fittings for three linear parts including solid phase, phase
transition phase and liquid phase were found. After having the intersection points of estimated
x and y values from Figure 12 (B), the fittings for heating T-history curves were found and
shown in Figure 12 (C). By calculating the intersection points of estimated t and T values, the
time (tphase) and temperature (Tphase) for phase transition range of multi-layer PCM fabrics were
determined.

As shown in Figure 12 (D), the sample C4pec,6000) had higher tphase and Tphase Values than the
sample C4pw, which also supported that C4pec sample had better thermal buffering effect than
Capw.

In addition, the thermal insulation values (1) of all the samples were calculated according to
equation (8), and were schemed in Figure 12 (E). The T, was the heating temperature of 80
°C and T, was the room temperature. As a result, both sample C4pec 6000) and C4pw had lower
| values than Céeference from heating T-history, which was caused by large amount of still air in
CAreference SAMple.

By comparing with other methods of reported work, the application of Newton’s cooling law
can not only exactly determine the thermal buffering effect but also predict the T-history.
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Figure 12 T-history of multi-layer fabrics containing PW and PEG (A), plots of In [7+T5]
against 7 (B), heating T-history with fitting models (C), estimated phase transition range (D) and

evaluation of thermal buffering (E)

5. Enhanced heat transfer efficiency

Different metal microparticles (Cu, Al, Ag, Fe and Zn) are introduced in the PCM-loaded layer
to enhance the heat transfer efficiency according to published work ([3] in Sec. 9.1). The Fe
microparticles are the best one of six different microparticles to be introduced in PCM-loaded

layer.
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The thermal conductivity values of the Fe-incorporated fibrous multi-layer PCM system
(C4pec.6000,Fe)) are smaller than 0.1 W Kt m™, which is schemed in Figure 13 (A). Especially,
the thermal conductivity of the Fe-incorporated fibrous multi-layer PCM fabrics (C4pec,6000,r¢))
is 0.0573 W K m, which is just slightly higher than the fibrous multi-layer PCM fabrics
(C4pec.s000) With thermal conductivity of 0.0543 W K m™. Besides, the comparison of the
Fe-incorporated fibrous multi-layer PCM fabrics with neat PCMs or other PCM-incorporated
materials (including PCM containing fibers, MPCMs, carbon-based PCM composites and
metal-based PCM composites) is also shown in Figure 13 (A) [74,82,89-105], and the Fe-
incorporated fibrous multi-layer PCM fabrics have lowest thermal conductivity. The main
reason is that the fibrous multi-layer PCM system contains five layers and fours layers are
fibrous materials with small thermal conductivity. The used viscose nonwoven fabric has a
thermal conductivity of 0.0298 W K m?, and PET fabric with hydrophobic coating has a
thermal conductivity of 0.0693 W K m™. Besides, the PCM-loaded layer has a small thermal
conductivity. The PEG-coated viscose fabric (UPEGVeoo0) has a small thermal conductivity of
0.0395 W K m?, and the PEG/Fe-coated viscose fabric (UPEGVsooo0re) has a small thermal
conductivity of 0.0654 W Kt m™,

Although the overall thermal conductivity of the Fe-incorporated fibrous multi-layer PCM
system is small, some characters are observed:

® The thermal conductivity of the Fe-incorporated fibrous multi-layer PCM system is very
close to common fabric (e.g., viscose nonwoven fabric with a thermal conductivity of
0.0298 W K m™). In this case, the Fe-incorporated fibrous multi-layer PCM system has a
similar thermal comfort as common fabric, which is totally different from other reported
thermal enhanced PCM products. It validates the suitable application of Fe-incorporated
fibrous multi-layer PCM systém in the textile.

® The incorporation of Fe microparticles in the PCM-loaded layer still enhances the heat
transfer efficiency. The thermal conductivity of the PCM-loaded layer (UPEGVsoo0o,re) iS
increased 65.6%.

® The temperature of C4(pec,6000,re) increases faster than C4pec 6000), as shown in Figure 13
(B). Figure 13 (C) presented the estimated phase transition range in detail. However, the
phase transition range of C4pec,6000,Fe) Started later and lasted longer than than C4pec 6000).
The C4pec,6000,re) has a phase transition for 47.06 s while the temperature is increased 6.52
°C. The reason is that the heat transfer through the whole fibrous multi-layer PCM system
with or without Fe microparticles is indeed non-uniform during phase transition. The
surface temperature of the fibrous multi-layer PCM system with or without Fe
microparticles is affected by the thermal conductivity, thickness, molten points etc.
Besides, more precise control of thermal buffering effect in the limited temperature was
observed for the C4pec 6000 Fe)-
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Figure 13 Estimation of thermal conductivity enhancement of Fe-incorporated fibrous multi-

layer PCM system (A: comparison with PCM products, B: T-history of Fe-incorporated fibrous

multi-layer PCM system, and C: thermal buffering range of Fe-incorporated fibrous multi-layer

PCM system)

6. Controlled breathability by modifying PCM-loaded Layer
There is no breathability since PCM-loaded layer is a composite where there is no path for air
or water vapor to penetrate. For the fibrous multi-layer PCM system, introduction of air pocket
is an alternative to enhance mass transfer and incorporate other materials for functions [106].
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pocket (PEG-coated viscose fabric). The PCM pockets are uniformly distributed between two
barrier layers with certain air gaps.

Since the PCM-loaded layer comprises of PCM pockets and air pockets, as shown in the Figure
14 (A), the possibility of PEG leakage within the PCM-loaded layer must be considered. At
first, there was no PEG leakage observed through the fibrous multi-layer PCM system after
heating/cooling cycles, either from the vertical or planar direction. As explained in the Sec. ‘4°,
The combination of the weak interfacial adhesion between molten PEG and the protection layer
(PET fabric with hydrophobic coating) and the use of a PU nanofibrous membrane in the fibrous
multi-layer PCM system were responsible for this outcome.

However, it was observed that the diffusion of molten PEG within the PCM pocket inside the
fibrous multi-layer PCM system was strongly linked to the amount of loaded PEG. For instance,
Figure 14 (B-i) displays the leakage phenomena of sample UPEGV1o.1 with mass ratio (Rpec)
of PEG to viscose fabric of 10:1, where the PEG has dispersed throughout the PCM pocket and
air pocket, resulting in obvious leakage. However, when the mass ratio of PEG to viscose fabric
in the PCM-loaded layer was reduced to 5:1, the sample UPEGV:s.1 exhibited a clear boundary
between the PCM pocket and air pocket, and minimal diffusion of molten PEG was detected
(Figure 14 (B-ii)). The following reasons are found:

® \When there was a higher loading amount of PEG in the PCM pocket as shown in Figure
14 (B-iv), some PEGs were located outside of the viscose fabric. Before heating process
with pressure, the PCM pocket ideally had a width of Dg and thickness of Lo. During the
heating process with pressure, the PEG outside of the viscose fabric was forced to move
along the fabric surface direction because molten PEG was movable. Then after heating
process with pressure, the dimension of the PCM pocket was changed and Do became D1
and Lo became Li. The Do was smaller than D1 and Lo was higher than L;. Consequently,
during heating and cooling cycles with pressure, the PEG outside the viscose fabric melted
and began to move along the fabric surface direction, leading to leakage phenomena. For
example, the UPEGV10.1 had a PEG diffusion and instability of PEG encapsulation.

® However, when the PEG loading amount was limited as shown in Figure 14 (B-iii), the
majority of PEG was efficiently adsorbed by the viscose fabric, despite of a very small
amount being outside the fabric. It was supposed that the movement of molten PEG inside
the viscose fabric was not affected and dimensions including thickness and length were not
significantly changed. In details, Do and Lo values were almost same as D1 and L. After
undergoing heating and cooling cycles under pressure, the PEG located outside of the
viscose fabric is completely melted, while still remaining within the coverage of the PCM
pocket.

Therefore, the optimal PCM-loaded layer for creating a breathable fibrous multi-layer PCM

system is the PEGVs.1 with a Rpeg ratio of 5:1.
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By modifying the size of the PCM pocket and the breathability of the fibrous multi-layer PCM
system was modified. When the size of the PCM pocket was decreased from 3 mm to 2 mm,
the air permeability of the breathable fibrous multi-layer PCM system was increased from 4.6
mm/s to 9 mm/s under 100 Pa, and water vapor permeability of the breathable fibrous multi-
layer PCM system was increased from 31.4 m? Pa W to 43.4 m? Pa W, Although the
breathability was realized, there is no comparability of the breathable fibrous multi-layer PCM
system with other work [107-112], which was shown in Figure 15 (A). This is attributed to the
presence of two layers of PU nanofibrous membranes. However, the overall air permeability
could be enhanced by having non-uniform placement and form of the PCM pocket inside the
fibrous multi-layer PCM system.

Besides, the overall enthalpy value of the breathable fibrous multi-layer PCM system was 7.8
J/g, which was higher than majority of the MPCM-coated fabrics (Figure 15 (B)). By
combining with breathability and use of nanofibrous membrane, the breathable fibrous multi-
layer PCM system has a potential in special applications (e.g., mask etc.).

Since there were air pockets and PCM pockets in the breathable fibrous multi-layer PCM
system, there was a heterogenous heat transfer through the whole breathable fibrous multi-layer
PCM system. As shown in Figure 14 (C), the air pocket faster reached the final stable
temperature while it took a longer time for PCM pocket to reach the final stable temperature.
Besides, it was found that the phase transition of the PCM pocket always started from the
boarder between PCM pocket and air pocket and diffused to the center of PCM pocket from
FLIR video. Such phenomena were caused by heterogenous heat transfer through air pocket
and PCM pocket. There was only thermal convection for air pocket while there was ideally the
thermal conduction for PCM pocket. However, the temperature change rate was higher than
PCM pocket when the phase transition starts. Then, the heat transfer from the air pocket to the
PCM pocket happened. As a result, the phase transition of PEG at the perimeter of the PCM
pocket commenced earlier and exhibited a quicker rate of change due to the coupling of thermal
conduction and thermal convection. In contrast, the phase transition of PEG at the center of the
PCM pocket was solely impacted by thermal conduction.

Additionally, the comparative analysis with previous research highlighted the adaptable nature
of the permeable fibrous multi-layer PCM system, depicted in Figure 16 (A-i), (A-ii) and (A-
iii). Therefore, it is recommended that breathable fibrous multi-layer PCM system are suitable
for various human body parts (e.g. safeguarding the chest, arms and legs) with optimal
compatibility with textiles.

In addition, a PET fabric with hydrophobic coating was utilized as a protective layer, proposing
waterproof and self-cleaning capabilities for the breathable fibrous multi-layer PCM system.
The majority of dyes were simply drop out as depicted in Figure 16 (B-i), (B-ii) and (B-iii),
whilst water droplets were efficiently deposited on the fibrous multi-layer PCM system surface
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as presented in Figure 16 (C). Therefore, in practical application, PEG as phase change material
(PCM) could be well safeguarded.
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Figure 16 Flexibility (A), self-cleaning property (B) and hydrophobicity (C) of the fibrous
multi-layer PCM system

7. Conclusion

This dissertation is conceived as a summary of published scientific and professional works,
where the author of this thesis the the first author. In order to emphasize the topicality of the
studies topic, the novelty and author motivation to research activities, the work is supplemented
with citations of other research works published in the given area.

28



The present work established a fibrous multi-layer PCM system. The fibrous multi-layer PCM
system consisted of PCM-loaded layer, barrier layer and protection layer. The fibrous multi-
layer PCM system could meet various applications and practical situations. The following
conclusion have been drawn:

® By controlling the interfacial adhesion of molten PCMs on barrier layer or protection layer,
the leakage phenomena were totally avoided. The PEG and paraffin wax were suitable as
PCMs in such fibrous multi-layer PCM system. The advantage of the fibrous multi-layer
PCM system over other PCM textiles was the PCM loading amount. The maximum loading
amount of PCMs in the multi-layer PCM fabric was 45 wt%. The overall enthalpy value of
the multi-layer PCM fabric is high as 78 J/g. Besides, the working temperature of the
fibrous multi-layer PCM system is easily adjusted by using different PCMs. In addition,
the PCM performance of the fibrous multi-layer PCM system could be improved by using
the protection layer with small areal density.

® The Newton’s cooling law was successfully modified to characterize the heating T-history
of the fibrous multi-layer PCM system. Especially, the thermal buffering effect was exactly
determined by applying Newton’s cooling law. The mathematical prediction of the T-
history of fibrous multi-layer PCM system was also realized.

® The thermal enhancement of the fibrous multi-layer PCM system was realized by
introducing metal microparticles in the PCM-loaded layer. The overall enthalpy value of
the fibrous multi-layer PCM system containing metal microparticles was higher than 50
Jg.

® The breathability of the fibrous multi-layer PCM system was realized by modifying PCM-
loaded layer, and the PCM-loaded layer was separated into PCM pocket and air pocket.
There was a limitation of PCM loading amount in the PCM pocket of the breathable fibrous
multi-layer PCM system. Besides, higher air pocket inside the fibrous multi-layer PCM
system resulted in better breathability. However, the breathability was small since there
were two layers of nanofibrous membranes inside the fibrous multi-layer PCM system.
Still, the introduction of the air pocket provided an alternative to enhance breathability.
Besides, the PCM pocket and air pocket had different T-history behaviors because of their
different thermal resistances. It was found that the size of air pocket was strongly connected
to the mutual heat transfer between PCM pocket and air pocket.
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Recommendation of the supervisor on Ph.D. thesis of Kai Yang M.Enqg.

Date: 10.01.2024

Thesis title: Multi-Layer Phase Change Materials System for Thermal Energy Storage

The PhD thesis of Kai Yang is concerned with the preparation and characterization of a fibrous multi-
layer phase change material (PCM) system for buffering thermal shocks from the environment. The
fibrous multi-layer PCM system composed from PCM-loaded layer, barrier layer and protective layer
was developed. By controlling the interfacial adhesion of melting PCMs on barrier layer or protection
layer, the leakage phenomena were avoided. The PEG and paraffin wax were selected as PCM. The
maximum loading amount of these PCMs in the fibrous multi-layer PCM system was 45 wt.% which
was ensuring the good overall enthalpy 78 J/g supporting thermal buffering effects. The introduction of
metal microparticles into PCM-loaded layer was able to enhance heat transfer through the whole system.

The breathability of the fibrous multi-layer PCM system was ensured by splitting of PCM-loaded layer
to system of air pockets and PCM pockets. The size of air pockets tuning the mutual heat transfer
between PCM pockets and air pockets was selected.

The thesis adheres to the specified format and successfully achieves all of its intended objectives. The
candidate has demonstrated a high level of systematicity over the course of his research, thus achieving
outstanding results through the pursuit of specific aims. He employed advanced scientific methods to
evaluate and examine data. The discussions pertaining to the outcomes are coherent and include
comparisons of the attained results with those of other published works. The language proficiency
exhibited in the thesis is commendable and satisfies the standards expected at the doctoral level. Majority
of his findings exhibit novelty and have already been published by him in high-impacted academic
journals. His exceptional abilities are evidenced by his publication record in journals with high-impact
factors. Throughout his research tenure at TUL, he has promoted his findings through the publication of
21 papers in journals with high-impact factors, 5 book chapters, and 17 articles in conference
proceedings. Throughout his academic pursuits, he demonstrated a high level of diligence and
competency. The findings of the dissertation are valuable, innovative, and readily applicable in practical
settings. Thus, it is highly recommended that the thesis be presented for the final doctoral defense.

When searching for plagiarism, a match of 1 percent only was found. Reason is the form of a dissertation
thesis as an annotated overview of published articles.

Prof. Ing. Jiti Militky, CSc. EURING

Supervisor
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12. Reviews of the Opponents
Opponent report on doctoral dissertation — Mr. Kai Yang, M.Eng

Opponent: Jan Marek MSc., PhD. — InoTEX, technical and sales director

The importance of thermo-regulating barrier properties is increasing. As working and living
conditions shift to more extreme environments, as demands on living comfort are increasing, but
also as a result of the steep increase in energy prices and the costs associated with regulating the
quality of the environment in buildings through air conditioning. It can be expected that the
importance of thermal regulatory properties will also increase as a result of ongoing climate
change.

A tool for achieving thermoregulatory properties is the application of PCM. As an extensive
introductory literature review has shown, it is possible to use textile substrates as their carriers.
However, with regard to the need to achieve optimal efficiency and stability of the effect, it is
necessary to look for a suitable way of incorporation of PCMs systems exhibiting the thermal
energy storage into the textiles.

The development of textile products leading to new functional and multifunctional properties was
therefore the impetus for the focus of the dissertation of Kai Yang, M.Eng. “Multi-Layer Phase
Change Materials Systems for Thermal Energy Storage”.

Informed by the limitations, especially the risk of deterioration of the necessary mechanical -
physical properties of the fabric when using PCM fibers and the negative effect of film-forming
polymer binder on stiffness, breathability (air and moisture vapour permeability) affecting the
thermal comfort management, author focused on the multi-layer fabric structure in which the
PCM coated layer (Vis NW) is covered with barrier layers to avoid leakage. Due to the extensive
experience of the training faculty of textile engineering he focused on the suitability of using PU
based nanomembranes as a barrier against the undesirable PCM leakage that would prevent the
loss of thermo-regulatory ability of functional textiles and prevent the deterioration of their
thermo-regulatory barrier properties. De to the weak mechanical durability of nanomembranes
the commercial PET knitted surface fabric was used at the same time as a protection of
nanomembranes. Alternatively, the hydrophobized PET fabric as surface protection layer was used
(parameters of used knits summarized in the table 1). Melting points of selected organic PCMs
were defined (PEGs 600-6000, paraffin wax, myristic acid). Multilayer constructions containing
PCMs (PW, PEG 6000) loaded Vis NW fabric both sides covered by PU barrier nanomembranes
and hydrophobized PET knit surface layers were used as standards in minimizing PCM leakage,
achieving thermal control and control of working temperatures, and finally providing other utility
functions (increasing heat transfer and breathability). Various characteristics of fibre multilayer
PCM systems were analysed towards the construction of a fibrous multi-layer PCM system
(mechanism to avoid leakage, PCM loading performance - including encapsulation efficiency,
PCM loading amount, relative crystalline degree and range of working temperature. An extensive
set of figures presents comparisons of PCM incorporated products used in the dissertation and
commercial products su ch as Outlast. Figures were also used to display estimated phase
transition range and evaluation of thermal buffering. The possibility of next increasing the heat
transfer efficiency by the addition of Fe microparticles presented in the dissertation was also
demonstrated using other metal microparticles (listed in the attached author's publication 9.3
Appendix 1).
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In order to achieve the stability of the thermal-regulatory effect and the necessary wearing
comfort of the multi-layer construction used for the application of PCM, where their compact
application on Vis NT reduces the permeability of air and water vapour, a unique solution was
designed by using air "pockets”; in the sandwich layer containing PCM, free spaces (air) and areas
with PCM deposition alternate. Measurements have shown that by choosing an optimized mass
ratio of PCM (PEG) and carrier Vis textile, it is possible to minimize its diffusion of the molten PEG
from the places of its deposition into the space of the air pockets during heating/cooling cycles.
The rationale for this phenomenon is given and supported in more detail by figures contained in
the Full Text Appendix of the publication of the team led by aspirant (9.2-Appendix1).

The conclusions presented by the author at the end of the dissertation describe the established
properties of the proposed fibrous multi-layer PCM system, which give a prerequisite for its
application in practice.

The extent of the literature search (113 references), as well as his publication activity (10 Journal
publications as corresponding author of team + 11 as co-author, partly presented in the quite
unique Appendix 1 with Full text reprints of 5 Research Journal Articles — Kai Yang as
corresponding representative of the team), 5 cited book chapters and 17 team presentation on
conferences proves that he devotes adequate attention to this inseparable work associated with
scientific activities.

The doctoral student has demonstrated the ability of independent scientific research work. From
the experience with his work on the development of PCM functional textiles, which he carried out
partly in the InoTEX technological laboratory as part of his cooperation on an international project
(CZ-PRC), it is possible to confirm his thoroughness and systematic approach to experiment
planning. In addition, during the period of restrictions related with the Covid 19 pandemic, his
involvement in the project overcame limitations that would otherwise have significantly
jeopardize the fulfilment of the joint project assignment of TUL/InoTEX with Zheijang Sci-Tech
Uni.

The dissertation thesis describes the scope of work carried out and a clear summary of the results
with factually and clearly formulated conclusions (supplemented by Appendix 2 — with 7 tabular
Details for comparison). The thesis ends with a proposal of further activities P 11- Future
prospects).

Questions to be answered during thesis defence:

1. Air pocket/PCM pocket structure — presented as a solution to achieve the thermo-barrier
effect and breathability comfort of multi-layer fabric with embedded PCM — what is the
idea of the method of its industrial production?

2. Is it possible to compare the final user properties of multilayer textile PCM structures with
other known alternatives (advantages/disadvantages)?

| recommend the Kai Yang's, M.Eng. dissertation thesis for defense.

Jan Marek MSc., Ph}'fﬁ. Dvar Kralové nad Labem, 10.03.2024
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Referee's report on PhD. thesis of
Kai Yang

"Multi-Layer Phase Change Materials System for Thermal
Energy Storage "

Professor Miroslav Cernik

The presented thesis comprises 155 pages, with about one hundred pages of reprints of the
author's papers. The thesis deals with decreasing the leakage of PCM during heating/cooling
by applying nanofibrous membranes, thermal enhancement and increasing the breathability of
the fabrics.

Chapter 1 (Introduction) introduces the subject and defines the function of PCM-
incorporated textiles. The second aspect is to enhance thermal regulation and energy storage
and support the light radiation-thermal energy conversion. This topic is solved by presenting
scientific papers. The papers deal with preparing, characterizing, and testing multi-layer
fabric. In total, the author published 20 research papers on this topic, and four of them, where
he is the first author, are presented in the appendix. The author's contribution to the subject of
the thesis is sufficient.

Chapter 2 (State of the Art) discusses two types of PCM — microcapsulated organic PCM
and form-stable PCM. The PCM-containing fibres are prepared using various technologies,
including electrospinning, centrifugal spinning, solution spinning, etc. The primary
characteristic of the PCM fabrics is the measurement of kinetics of the temperature changes.
A pure empirical model was proposed based on observing three parts of In(T) vs t plot. On the
other hand, the parts correspond to the solid phase state, phase transition state and liquid PCM
state. Then, the model is not empirical because it describes the natural physical forms of PCM
material on the fabrics, but in this case, it should be confirmed by measurement.

Chapter 3 (Motivation and aims). The motivation and aims of the work are defined and
logical. According to the author, this is the first work where nanofibrous membranes are used
in the fibrous multi-layer PCM system. The work's main objective is to find a suitable multi-
layer fabric structure to contain PCM, make its complex characteristics and improve its
thermal energy storage efficiency. Also, the breathability of the fabrics was optimized.

Chapter 4 (Construction of A Fibrous Multi-layer PCM System). After various fibrous
multi-layer systems were prepared, two structures without leakage were obtained and used for
other testing. The chapter presented the performance of the system compared to other similar
systems. The methods used in the thesis are relevant for fulfilling the thesis aim.

Chapter 5 (Enhanced heat transfer efficiency) and 6 (Controlled breathability by
modifying PCM-loaded Layer) describe results taken from provided publications.

Chapter 6 (Conclusions). The author came to the following conclusions: The leakage was
avoided by controlling the interfacial adhesion of the layers, and the maximum loading
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amount of PCMs was 45%. Metal microparticles enhanced the enthalpy of the system. The
question is whether the enthalpy of the multi-layer PCM fabric is 78 J/g and that of the PCM
containing metal microparticles is 50 J/g. It is strange.

Referee remarks, question and conclusions
The thesis is logically divided into chapters, the content is illustrated, and all determined
results are simply described.

QUESTIONS

1. The author said that phase change materials (PCM) adsorb/release thermal energy
during phase transition. Do you know some material which does not absorb/release
thermal energy during its phase transition? And why did you write adsorb? Is it not
absorption? Did you not mention the material that absorbs/releases thermal energy
to provide desired heating or cooling?

2. In calculating Bi number, there are different units — h and K in meters L in mm.
Could you show the details of the calculation?

3. Why is the enthalpy of the multi-layer PCM fabric 78 J/g, and why for the PCM
containing metal microparticles it is only 50 J/g?

Imperfections and recommendations

The language of the thesis is good, and the thesis is nicely written. I did not find many errors
and mistypes. Some examples:
1. Equation 1 has an error: index f is missing
2. Table 1: Areal density is expressed in g/m?. The numbers are not statistically correct,
e.g. 200+£2.35.
3. Figurel5Figurel5 on page 28,
4. Some of the figures are very small and unreadable, e.g. Fig.14,

Referee's conclusion

The presented thesis is based on four scientific papers selected from a significantly broader
set of his publications. The publications have 4, 1, 18 and 5 citations till now. So, the referees
independently checked the papers during publication, and the scientific community was
interested in the author’s results. The student is the first author of these publications, and his
contribution was substantial. The thesis's text is logical, has all the necessary parts, and shows
that the author understands the problem. The thesis has a significant influence on the field of
study.

The recommendations mentioned above and the questions are not so significant that they
decrease the scientific merit of the thesis.

The thesis is good and meets all criteria to be taken to the defence. I, therefore, recommend

the thesis be taken for defence in front of the committee.

In Liberec (Czech R.) on May 30, 2024 Prof. Dr. Ing. Miroslav Cernik, CSc.
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